
Our calibrated model has no predictive value: An example from
the petroleum industry

Author: J.N. Carter, P.J. Ballester, Z. Tavassoli and P.R. King

Address: Department of Earth Sciences and Engineering, Imperial College of Science
Technology and Medicine, South Kensington, London, SW7 2BP, United Kingdom.

Tele: +44 (0)20 7594 7322

Fax: +44 (0)20 7594 7444

Email: j.n.carter@ic.ac.uk.

In many studies involving numeric models of complex real world situations, for example
petroleum reservoirs and climate modelling, it is implicitly assumed that if the model has
been carefully calibrated to reproduce previously observed behaviour, then the model will
have some predictive capacity. It is recognised that predictability may only be achievable
for a finite period of time, and that any prediction will be uncertain to some extent.

Two types of error are considered in most calibration exercises: measurement error
and model error. Measurement errors are fixed at the time the measurement was made,
they generally have well defined statistics and can be handled appropriately. Model errors
are due to approximations, such as a loss of spatial, or temporal, resolution, and the non-
inclusion of all of the relevant physics. The assumption that is normally made is that if the
model errors are sufficiently unimportant, so that when the model has been calibrated to
measurement data, then we have some level of acceptable predictability. If the model does
not have predictability, then the model errors are assumed to be too large and we need
to use a “better” model. Where “better” probably means improved resolution, spatial or
temporal, and/or the inclusion of more physics.

In this paper we present the results of a study, for a petroleum reservoir, that suggests
that:

• In the absence of model errors, and with very low measurement errors, it is possible
to obtain calibrated models that do not have any predictive capability.

• That such models may be significantly easier to identify than the correct model.

• We are unable to differentiate between calibrated models with or without predictive
capabilities.

• The introduction of even small model errors may make it impossible to obtain a
calibrated model with predictive value.

If the observations made with this model are not unique to the model, and we have no
reason to believe that the model is unique, then this presents a potentially serious obstacle
to the use of models of this type for prediction.

Our model is a cross-section of a simple layered reservoir, with a single vertical fault
midway between an injector producer pair, as shown in figure 1. The model that we
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Figure 1: Reservoir model

calibrate has three parameters: the vertical displacement (throw) of the fault; the per-
meability of the poor quality sand; and the permeability of the good quality sand. The
geological layers are assumed to be homogeneous (ie they have constant physical proper-
ties). The “truth” case, which is used to generate the measurements for the calibration,
is a variant of the calibration model, but with fixed parameter values. In the case of
no model error, then the “truth” case is a member of the set of all possible calibration
models. The size and type of model error is chosen by how a specific calibration model is
perturbed to obtain the truth case. In the work presented in this paper, the model error
is obtained by introducing small variations into the spatial properties of the geological
layers. The permeability and porosity in each grid block are randomly perturbed. The
maximum variations that are allowed is ±1% of the unperturbed mean values. These
perturbations are much lower than would be expected for a real world rock that had been
classified as homogeneous.

Our procedure is as follows:

1. Choose “truth” values for the three model parameters;

2. Select the level of measurement and model error to be used;

3. From the truth case produce the measurements required for the calibration process
(three years of monthly data);

4. Calibrate the model against the measurements;

5. Predict the behaviour for years 4-10.
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Figure 2: Evolved population of models. Neighbouring models are connected by triangles.

We have considered the truth case: h = 10.4, kp = 1.31 and kg = 131.7 with and
without model error. No measurement error was added, but we assumed Gaussian noise
with a 1% standard deviation when calculating the likelihood that a proposed calibration
matches the truth.

In order to quantify the degree of the model calibration against measurements, we
define first an objective function for the calibration period, ∆m, as follows

4m =
1

36

36∑

j=1

3∑

k=1

|sim(j, k)− obj(j, k)|
2σjk

(1)

where sim(j, k) is the simulated response for production serie k of the model at time t,
obj(j, k) is the corresponding true value and σjk, an estimation of what would be the
associated measurement error. We consider three production series: Oil Production Rate,
Water Production Rate (or Water Cut) and Water Injection Rate.

Likewise, the objective function for the prediction period, ∆f , is

4f =
1

7

43∑

j=37

3∑

k=1

|sim(j, k)− obj(j, k)|
2σjk

(2)

Thereafter, we run a Steady State Real-Parameter Genetic Algorithm, using ∆m as
the fitness measure, for the truth without model error. This GA used a population size
of 300 models and a total of 12, 300 forward simulations. A representation of the evolved
population of models is presented in figure 2.

As pictured in figure 2, the GA has revealed three optimal regions. It is to be noted that
the basin surrounding the global optimum is very small compared to the basin surrounding
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Figure 3: Surface plots for ∆m(opt), and ∆f (opt) in region 1 without model error, h ∈
(10, 12) and kp ∈ (1.20, 1.70)
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Figure 4: Surface plots for ∆m(opt), and ∆f (opt) in region 2 without model error, h ∈
(3.5, 6.5) and kp ∈ (1.40, 1.90)

the other significant optimum. Thus, most optimisation algorithms are likely to find a
non-global optimum, whilst not finding the global optimum.

We now perform an exhaustive search on a regular grid for each of these three inter-
esting regions. The grid resolution is 4h = 0.1, 4kp = 0.1 and 4kg = 0.01. We know
from numerous numerical studies that for fixed values of (h, kp), then there is a unique
minimum, as a function of kg, in our objective function. We are therefore able to present
our results as follows: for any pair (h, kp) we can obtain kg(opt), ∆m(opt), and ∆f (opt);
hence we can produce surface maps of these quantities for a range of (h, kp). Figures 3, 4
and 5 show the results for the case in which there is no modelling error. We can see that
only the global optimum makes an accurate prediction, this is further illustrated by the
plots of water injection, oil and water production rates in figure 6.

When we repeat these calculations, but having introduced the small model error to
obtain figures 7, 8 and 9. We can see that there is no longer a optimum at about
(h, kp) = (10.4, 1.31). The global optimum has clearly moved away from the “truth”.
Neither does the “truth” represent a local optimum for the prediction. The local optimum
in region 2 has also disappeared. I region 3 the local optimum has moved, but there is no
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Figure 5: Surface plots for ∆m(opt), and ∆f (opt) in region 3 without model error, h ∈
(31, 39) and kp ∈ (2.50, 3.00)

associated local optimum for the prediction.
Qualitively there is no difference between the processes used in the two cases. However

the results that we obtain are quite different. Given our inability, for this model, to know
the value of the prediction from the available information, it is difficult to be confident
that if we have a well calibrated model that its predictions have value or not.
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Figure 6: Calibration (up to 3 years) and prediction (3 years onwards) for the best model
(h = 10.5, kp = 1.53 and kg = 131.3) provided by the GA. ∆m = 0.11 and ∆f = 0.85.
“×” are the true measurements and “+” the simulated values.
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Figure 7: Surface plots for ∆m(opt), and ∆f (opt) in region 1 with model error, h ∈ (10, 12)
and kp ∈ (1.20, 1.70)
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Figure 8: Surface plots for ∆m(opt), and ∆f (opt) in region 2 with model error, h ∈
(3.5, 6.5) and kp ∈ (1.40, 1.90)
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Figure 9: Surface plots for ∆m(opt), and ∆f (opt) in region 3 with model error, h ∈ (31, 39)
and kp ∈ (2.50, 3.00)
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